EdusalsaDiscover Your Stanford

EE 103

Introduction to Matrix Methods (CME 103)

  • autumn

3 - 5 units

Letter or Credit/No Credit

Introduction to applied linear algebra with emphasis on applications. Vectors, norm, and angle; linear independence and orthonormal sets; applications to document analysis. Clustering and the k-means algorithm. Matrices, left and right inverses, QR factorization. Least-squares and model fitting, regularization and cross-validation. Constrained and nonlinear least-squares. Applications include time-series prediction, tomography, optimal control, and portfolio optimization. Undergraduate students should enroll for 5 units, and graduate students should enroll for 3 units. Prerequisites:MATH 51 or CME 100, and basic knowledge of computing (CS 106A is more than enough, and can be taken concurrently). EE103/CME103 and Math 104 cover complementary topics in applied linear algebra. The focus of EE103 is on a few linear algebra concepts, and many applications; the focus of Math 104 is on algorithms and concepts.

Fulfills

  • GER:DB-Math

  • WAY-FR

  • WAY-AQR

Course Prequisites

Sections

autumn

Sign Up

To save EE 103 to your course bucketlist

Already Have An Account? Log In