EdusalsaDiscover Your Stanford

- Not Offered

3 units

Letter (ABCD/NP)

Introduction to electromagnetism and Maxwell's equations in static and dynamic regimes. Electrostatics and magnetostatics: Gauss's, Coulomb's, Faraday's, Ampere's, Biot-Savart's laws. Electric and magnetic potentials. Boundary conditions. Electric and magnetic field energy. Electrodynamics: Wave equation; Electromagnetic waves; Phasor form of Maxwell's equations.nSolution of the wave equation in 1D free space: Wavelength, wave-vector, forward and backward propagating plane waves.Poynting's theorem. Propagation in lossy media, skin depth. Reflection and refraction at planar boundaries, total internal reflection. Solutions of wave equation for various 1D-3D problems: Electromagnetic resonators, waveguides periodic media, transmission lines. Formerly EE 141. Prerequisites: an introductory course in electromagnetics (PHYS 43, PHYS 65, or EE 42) and a solid background in vector calculus (CME 100, CME 102, or MATH 52, with MATH 52 being an ideal prerequisite)

WAY-SMA

GER:DB-EngrAppSci

WAY-FR

Already Have An Account? Log In

**Pranav Rajpurkar** is a PhD student in Computer Science at Stanford, working on Artificial Intelligence for Healthcare. He was previously a Stanford undergrad ('16).

**Brad Girardeau** got his B.S, M.S. degrees in computer science at Stanford ('16, '17). When not thinking about computer security, he can be found playing violin or running across the Golden Gate Bridge.

## Discussion

## To ask a question about a course and to share your perspective, signup or login