EdusalsaDiscover Your Stanford

- Not Offered

5 units

Letter or Credit/No Credit

Ordinary differential equations and initial value problems, linear systems of such equations with an emphasis on second-order constant-coefficient equations, stability analysis for non-linear systems (including phase portraits and the role of eigenvalues), and numerical methods. Partial differential equations and boundary-value problems, Fourier series and initial conditions, and Fourier transform for non-periodic phenomena. n Throughout the development we harness insights from linear algebra, and software widgets are used to explore course topics on a computer (no coding background is needed). The free e-text provides motivation from applications across a wide array of fields (biology, chemistry, computer science, economics, engineering, and physics) described in a manner not requiring any area-specific expertise, and it has an appendix on Laplace transforms with many worked examples as a complement to the Fourier transform in the main text.n Prerequisite: Math 21 and Math 51, or equivalents.

GER:DB-Math

WAY-FR

Already Have An Account? Log In

**Pranav Rajpurkar** is a PhD student in Computer Science at Stanford, working on Artificial Intelligence for Healthcare. He was previously a Stanford undergrad ('16).

**Brad Girardeau** got his B.S, M.S. degrees in computer science at Stanford ('16, '17). When not thinking about computer security, he can be found playing violin or running across the Golden Gate Bridge.

## Discussion

## To ask a question about a course and to share your perspective, signup or login