EdusalsaDiscover Your Stanford

- Not Offered

3 units

Letter or Credit/No Credit

Statistics of real valued responses. Review of multivariate normal distribution theory. Univariate regression. Multiple regression. Constructing features from predictors. Geometry and algebra of least squares: subspaces, projections, normal equations, orthogonality, rank deficiency, Gauss-Markov. Gram-Schmidt, the QR decomposition and the SVD. Interpreting coefficients. Collinearity. Dependence and heteroscedasticity. Fits and the hat matrix. Model diagnostics. Model selection, Cp/AIC and crossvalidation, stepwise, lasso. Multiple comparisons. ANOVA, fixed and random effects. Use of bootstrap and permutations. Emphasis on problem sets involving substantive computations with data sets. Prerequisites: consent of instructor, 116, 200, applied statistics course, CS 106A, MATH 114.

Already Have An Account? Log In

**Pranav Rajpurkar** is a PhD student in Computer Science at Stanford, working on Artificial Intelligence for Healthcare. He was previously a Stanford undergrad ('16).

**Brad Girardeau** got his B.S, M.S. degrees in computer science at Stanford ('16, '17). When not thinking about computer security, he can be found playing violin or running across the Golden Gate Bridge.

## Discussion

## To ask a question about a course and to share your perspective, signup or login